PETG

■ Material Overview

PETG is a thermoplastic material, short for Polyethylene Terephthalate Glycol-modified. It is an amorphous copolyester and part of the transparent plastics family. PETG is produced by copolymerizing three different monomers.

Shenzhen Kings 3D Printing Technology Co., Ltd.

Floor 14-15, Building 3-A, Yunzhi Science Park, Gongming Street, Guangming District, Shenzhen | China 518107

Advantages

Superior Transparency:

PETG offers excellent clarity, making it ideal for applications that require a clear, visible finish.

Impact Resistance:

The material has high durability and resistance to impact, making it suitable for high-stress applications.

• Excellent Processability:

PETG is easy to process, with good flow and minimal warping during production.

Customizable Performance:

Its properties can be adjusted by modifying viscosity or adding third monomers like NPG and CHDM for enhanced performance.

Applications

Electronics

Cosmetics

Displays (a) Thermoforming (3) Medical

Devices

Packaging Materials.

PETG polyester chips quality index TDS

Item	Item		RH-1500C	Remark
Intrinsic \	Intrinsic Viscosity		0.73±0.015	Indicates the size of polymer molecules and its corresponding mechanical performance. The Viscosity is higher, the mechanical performance is better.
Melting T	Melting Temp		191±2	The product is non-crystalline and has no defined melting point. The melting point is measured by a microscope to obtain the melting temperature.
Carboxyl	Carboxyl Group		≤35	High terminal carboxyl content will reduce the thermal stability of the product.
Color	b-value	/	1±2	b:Yellow color index; higher values indicate more yellow.
Value	L-value	/	≥60	L: Lightness value.
Di-ethyle	Di-ethylene Glycol		≤1	Side reactions with Etherification may degrade material durability and thermal properties.
Moisture	Moisture content		≤0.4	Processing can cause polymer degradation due to moisture.
Ash Cont	Ash Content		≤0.08	Ash is used to characterize the content of impurities in polyester, which comes from metal oxides decomposed by catalysts, raw materials and mechanical impurities generated during the production process.
Density	Density		1.27	
Melt Flow Index		g/10min	10±2	Melt flow rate at 210°C with a 2.16kg weight.

Note:

- 1. The intrinsic viscosity is a phenol/tetrachloroethane mixed solvent of 3:2, tested at 25°C
- 2. This polyester is an amorphous polyester material, and there is no melting peak in the DSC test; therefore, the melting point is tested by microscopy, and the mid-melting temperature is taken.
- 3. This polyester can be widely used in 3D printing consumables, polyester plates, sheets, polyester injection molding, home appliances and other fields.

Web: www.kings3dprinter.com

Email: Info@kings3dprinter.com

